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Node Architecture

In AHV deployments, the Controller VM (CVM) runs as a VM and disks are presented using PCI passthrough.  This allows the full PCI controller

(and attached devices) to be passed through directly to the CVM and bypass the hypervisor.  AHV is based upon CentOS KVM. Full hardware

virtualization is used for guest VMs (HVM).

AHV Node

KVM Architecture

Within KVM there are a few main components:

KVM-kmod 

KVM kernel module

Libvirtd 

An API, daemon and management tool for managing KVM and QEMU. Communication between AOS and KVM / QEMU occurs through

libvirtd.

Qemu-kvm 

A machine emulator and virtualizer that runs in userspace for every Virtual Machine (domain). In AHV it is used for hardware-assisted

virtualization and VMs run as HVMs.

The following figure shows the relationship between the various components:
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KVM Component Relationship

Communication between AOS and KVM occurs via Libvirt. 

Processor generation compatibility

Similar to VMware's Enhanced vMotion Capability (EVC) which allows VMs to move between different processor generations; AHV will determine the lowest processor generation in

the cluster and constrain all QEMU domains to that level. This allows mixing of processor generations within an AHV cluster and ensures the ability to live migrate between hosts.

Configuration Maximums and Scalability

The following configuration maximums and scalability limits are applicable:

Maximum cluster size: 32

Maximum vCPUs per VM: Number of physical cores per host

Maximum memory per VM: 4.5TB or available physical node memory

Maximum virtual disk size: 9EB* (Exabyte)

Maximum VMs per host: N/A – Limited by memory

Maximum VMs per cluster: N/A – Limited by memory

*AHV does not have a traditional storage stack like ESXi / Hyper-V; all disks are passed to the VM(s) as raw SCSI block devices. This means the

maximum virtual disk size is limited by the maximum AOS vDisk size (9 Exabytes).

The above are true as of AHV 20220304.10013 and AOS 6.6. Refer to Configuration Maximums for other versions.

Compute

The following sections outline key capabilities of Nutanix AHV compute for workload management.

VM Templates

AHV has always had the image library which focused on capturing the data within a single vDisk so that it could be easily cloned, but input from

the admin was needed to complete the process of declaring the CPU, memory and network details. VM Templates take this concept to the next

level of simplicity and provides a familiar construct for admins that have utilized templates on other hypervisors.

AHV VM Templates are created from existing virtual machines, inheriting the attributes of the defining VM such as the CPU, memory, vdisks, and

networking details. The template can then be configured to customize the guest OS upon deployment and can optionally provide a Windows

license key. Templates allow for multiple versions to be maintained, allowing for easy updates such as operating system and application patches

to be applied without the need to create a new template. Admins can choose which version of the template is active, allowing the updates to be

staged ahead of time or the ability to switch back to a previous version if needed.
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Memory Overcommit

One of the central benefits of virtualization is the ability to overcommit compute resources, making it possible to provision more CPUs to VMs

than are physically present on the server host. Most workloads don’t need all of their assigned CPUs 100% of the time, and the hypervisor can

dynamically allocate CPU cycles to workloads that need them at each point in time.

Much like CPU or network resources, memory can be overcommitted also. At any given time, the VMs on the host may or may not use all their

allocated memory, and the hypervisor can share that unused memory with other workloads. Memory overcommit makes it possible for

administrators to provision a greater number of VMs per host, by combining the unused memory and allocating it to VMs that need it.

AOS 6.1 brings memory overcommit to AHV as an option to allow administrators flexibility in environments such as test and development where

additional memory and VM density are required. Overcommit is disabled by default and can be defined on a per-VM basis allowing sharing to be

done on all or just a subset of the VMs on a cluster.

VM Affinity Policies

Different types of applications can have requirements that dictate whether the VMs should run on the same host or a different host. This is

typically done for performance or availability benefits. Affinity controls enable you to govern where VMs run. AHV has two types of affinity

controls:

VM-host affinity 

Strictly ties a VM to a host or group of hosts, so the VM only runs on that host or group. Affinity is particularly applicable for use cases that

involve software licensing or VM appliances. In such cases, you often need to limit the number of hosts an application can run on or bind a

VM appliance to a single host.

Anti-affinity

AHV lets you declare that a given list of VMs shouldn’t run on the same hosts. Anti-affinity gives you a mechanism for allowing clustered

VMs or VMs running a distributed application to run on different hosts, increasing the application’s availability and resiliency. To prefer VM

availability over VM separation, the system overrides this type of rule when a cluster becomes constrained.

Virtual Trusted Platform Module (vTPM)

TPM technologies are designed to provide enhanced security and privacy in handling encryption operations. The purpose of the TPM is to ensure

information storage is better protected from unauthorized access. The primary use case is storing secrets, making it difficult to access them

without proper authorization.

The Trusted Computing Group outlines the TPM as a dedicated hardware chip that is soldered onto the motherboard in the computer, which

works great in a bare metal deployment. In a virtualized environment using a hypervisor such as AHV or ESXi, the physical TPM chip approach

does not scale to support multiple guest OS running on a single hardware configuration due to the following limitations.

Key Storage – The storage available in a physical TPM chip can hold roughly three transient keys.

TPM Isolation – The TPM chip does not provide any separation or isolation between multiple guest OS running on the same physical device.

To address the scaling issues for a virtualized environment, the hypervisor vendors have implemented a hypervisor-level software called virtual

TPM (vTPM), which conforms to the Trusted Computing Group’s TPM specification. vTPM emulates these TPM specifications in the same

functional manner as a physical TPM chip creating a private TPM instance per VM guest within the hypervisor. vTPM allows each VM guest to

have its own key storage, isolating it from the other guests running on the same physical server. To maintain this isolation, the vTPM does not use

the hardware physical TPM chip on the server.

Each hypervisor vendor is responsible for protecting the vTPM instance from outside access. Nutanix AHV, for example, ensures isolation

between VMs and encrypts vTPM data using a secure distributed secrets service called Mantle, preventing unauthorized access or tampering.

Live Migrations

Live migration allows the system to move VMs from one host to another while the VM is turned on without workload interruption, regardless of

whether the administrator or an automatic process initiates the movement. Live migrations occur regularly in the cluster nodes, triggered by

maintenance operations, ADS workload balancing, node expansion, or administrator-driven requests.
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You can also use live migration to migrate VMs to another physical cluster in the same location or in a different location to rebalance workloads,

run maintenance operations, or avoid planned interruptions. For cross-cluster live migrations, we recommend a network with 5ms of latency and

support a maximum 40ms latency between clusters.

There are several stages to a VM live migration:

Create a VM placeholder on the destination host

Iteratively copy the source VMs memory to the destination VM placeholder

Pause the VM on the source host

Copy the final VM state from the source VM to the destination VM placeholder

Update the network switches to ensure continued connectivity

Resume the VM on the destination host

Delete the paused VM from the source

Step 2, the copying of the VM’s memory, can occur over and up to a specific number of iterations (50 at the time of writing). As the VM is still

running, AHV will keep track of the VM’s memory which is actively being modified during the copy process in each iteration. Once an iteration is

complete, AHV will analyze the amount of memory that has changed and still needs to be copied over to the destination, as well as the achieved

rate of memory transfer over the network, to determine if another iteration is required or if the migration can proceed to the next step. The rate at

which a VM is modifying memory is more important to a successful migration than the amount of memory in a VM, so AHV will proactively

manage the speed of the VM to reduce the amount of memory needing to be sent in the next iteration.

Step 3, pausing of the VM on the source host, will only occur when AHV detects it can transfer the remaining memory in 300ms or less, ensuring

that the VM will respond on the destination host after a very short period. This is the maximum stun window. If the remaining memory cannot be

transferred within this window after the final iteration, then the migration can abort with a ‘failure to converge’ error. The migration may be

automatically re-tried by ADS, host evacuation, or by the administrator manually triggering another migration.

Step 5, updating the network switches, is enacted by sending a RARP broadcast network packet to all devices on the subnet while the VM is

being brought up. This ensures that external network switches are aware of where the VM is now running and can route packets appropriately, for

example ensuring that TCP connections are not lost during the migration.

Generation ID

There are a range of applications that use the Generation ID to access a virtual machine identifier to validate if the VM was cloned or duplicated

for licensing or functionality verification. Starting in AOS release 6.7, AHV creates a Generation ID for each VM that is created, which applications

running inside of that VM have access to. Applications can then make decisions on how they want to behave based on whether the correct

Generation ID is present. One notable example where this is important is in the case of Windows domain controllers, which can experience

problems if accidentally cloned or rolled back without proper safeguards. Generation ID is a mechanism that provides this information to a VM,

allowing these restrictions to be tested and enforced by the app.

Acropolis Dynamic Scheduler (ADS)

ADS, the Acropolis Dynamic Scheduler, is a key component in the AHV stack. ADS is responsible for VM migrations and placements during many

operations including resolving host hotspots (hosts with high CPU and storage usage), maintaining High Availability guarantees, optimizing VM

placement to free up resources, and enforcing administrator-defined policies. ADS is always running in the background, continuously monitoring

and optimizing the infrastructure.

Key features of ADS include:

Initial VM placement - Choosing the AHV host for a VM and defragmenting the cluster if needed to ensure sufficient resources are available

for the new VM

Dynamic hotspot mitigation - Monitoring each host and, when a hotspot is detected, resolving that hotspot

Background policy enforcement - for example moving VMs around to respect VM:Host affinity policies and VM:VM anti-affinity policies

Enforcing High Availability guarantees - When HA guarantees are enabled, ADS will move VMs in the running system to ensure all VMs on

each host can be recovered following the failure of an individual host.

Dynamic GPU management - Supports NVIDIA GPUs to provide specific vGPU profiles based on the VMs running in the system

Creating remediation plans based on the cost of movement to address each of the above cases

As ADS focuses on hotspot mitigation and has cost-minimizing remediation plans, this results in fewer VM movements than would be required for

an active load-balancing scenario.
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Hotspot Mitigation Example - Simple Plan

Figure 1 in the following example shows a host utilizing 90% of available CPU capacity. The CPU hotspot threshold is 85%, so ADS identifies that

VM movements are required.

In Figure 2, ADS computes a plan that will move one of the 8GB VMs from the third host to the second host, making sufficient space for one of

the VMs on the first host to move over.

The amount of memory on each of the VMs on the first host is taken into account when deciding which VM can be moved more easily. The final

state in Figure 3 shows the smaller of the two VMs on the first host moving over to the third host as that is the lowest cost move.

ADS Mitigation Example

ADS plans are usually more complex than this, as multiple dimensions are considered both for hotspot detection and for cost-minimization of the

remediation plans.

Networking

AHV leverages Open vSwitch (OVS) for all VM networking.  VM networking is configured through Prism / ACLI and each VM nic is connected into

a tap interface.

The following figure shows a conceptual diagram of the OVS architecture:

Open vSwitch Network Overview

In the prior image you see a few types of components:

Open vSwitch (OVS)

OVS is an open source software switch implemented in the Linux kernel and designed to work in a multiserver virtualization environment. By

default, OVS behaves like a layer-2 learning switch that maintains a MAC address table. The hypervisor host and VMs connect to virtual ports on

the switch.



OVS supports many popular switch features, including VLAN tagging, Link Aggregation Control Protocol (LACP), port mirroring, and quality of

service (QoS), to name a few. Each AHV server maintains an OVS instance, and all OVS instances combine to form a single logical switch.

Constructs called bridges manage the switch instances residing on the AHV hosts.

Bridge

Bridges act as virtual switches to manage network traffic between physical and virtual network interfaces. The default AHV configuration includes

an OVS bridge called br0 and a native Linux bridge called virbr0. The virbr0 Linux bridge carries management and storage communication

between the CVM and AHV host. All other storage, host, and VM network traffic flows through the br0 OVS bridge. The AHV host, VMs, and

physical interfaces use “ports” for connectivity to the bridge.

Port

Ports are logical constructs created in a bridge that represent connectivity to the virtual switch. Nutanix uses several port types, including internal,

tap, VXLAN, and bond:

An internal port—with the same name as the default bridge (br0)—provides access for the AHV host.

Tap ports act as bridge connections for virtual NICs presented to VMs.

VXLAN ports are used for the IP address management functionality provided by Acropolis.

Bonded ports provide NIC teaming for the physical interfaces of the AHV host.

Bond

Bonded ports aggregate the physical interfaces on the AHV host. By default, a bond named br0-up is created in bridge br0. After the node

imaging process, all interfaces are placed within a single bond, which is a requirement for the foundation imaging process. Changes to the default

bond, br0-up, often rename this to bond0. Nutanix recommends using the name br0-up to quickly identify the interface as the bridge br0 uplink.

OVS bonds allow for several load-balancing modes, including active-backup, balance-slb and balance-tcp. LACP can also be activated for a

bond. The “bond_mode” setting is not specified during installation and therefore defaults to active-backup, which is the recommended

configuration.

Uplink Load Balancing

Briefly mentioned in the prior section, it is possible to balance traffic across bond uplinks.

The following bond modes are available:

active-backup 

Default configuration which transmits all traffic over a single active adapter. If the active adapter becomes unavailable, another adapter in

the bond will become active. Limits throughput to a single nic's bandwidth. (Recommended)

balance-slb 

Balances each VM's nic across adapters in the bond (e.g. VM A nic 1 - eth0 / nic 2 - eth1). Limits VM per-nic throughput to a single nic's

bandwidth, however a VM with x nics can leverage x * adapter bandwidth (assuming x is the same for the number of VM nics and physical

uplink adapters in the bond). NOTE: has caveats for multicast traffic

balance-tcp / LACP 

Balances each VM nic's TCP session across adapters in the bond. Limits per-nic throughput to the maximum bond bandwidth (number of

physical uplink adapters * speed). Requires link aggregation and used when LACP is required.

You can find additional information on bonds in the AHV networking guide.

VM NIC Types

AHV supports the following VM network interface types:

Access (default)

Trunk (4.6 and above)

• 

• 

• 

• 

• 

◦ 

• 

◦ 

• 

◦ 

• 

• 

https://portal.nutanix.com/page/documents/solutions/details?targetId=BP-2071-AHV-Networking:BP-2071-AHV-Networking


By default VM nics will be created as Access interfaces (similar to what you'd see with a VM nic on a port group), however it is possible to expose

a trunked interface up to the VM's OS. Trunked NICs send the primary VLAN untagged, and all additional VLANs as tags to the same vNIC on

the VM. This is useful to bring multiple networks to a VM without adding vNICs.

A trunked interface can be added with the following command:

vm.nic_create VM_NAME vlan_mode=kTrunked trunked_networks=ALLOWED_VLANS network=NATIVE_VLAN

Example:

vm.nic_create fooVM vlan_mode=kTrunked trunked_networks=10,20,30 network=vlan.10

Service Chaining

AHV Service chaining allows us to intercept all traffic and forward to a packet processor (NFV, appliance, virtual appliance, etc.) functions

transparently as part of the network path.

Common uses for service chaining:

Firewall (e.g. Palo Alto, etc.)

IDS/IPS/network monitors (e.g. packet capture)

Within service chaining there are two types of way:

Service chain - Packet Processors

Inline packet processor 

Intercepts packets inline as they flow through OVS

Can modify and allow/deny packet

Common use: firewalls 

Tap packet processor 

Inspects packets as they flow, can only read as it's a tap into the packet flow

Common uses: IDS/IPS/network monitor

Any service chaining is done after the Flow - Microsegmentation rules are applied and before the packet leaves the local OVS. This occurs in the

network function bridge (br.nf):

Service Chain - Flow

• 

• 

• 

◦ 

◦ 

◦ 

• 

◦ 

◦ 



NOTE: it is possible to string together multiple NFV / packet processors in a single chain. Service chaining is only applicable when Acropolis

controls the network stack. Service chaining is not currently supported for network controller-based VLANs or VPCs.

Network Controller

The network controller was released in AOS 6.0 to enable Flow Virtual Networking and VPC overlay subnets. With AOS release 6.7, Nutanix

enhanced the network controller, adding support for guest VMs in VLAN-backed subnets. When the network controller is enabled, a new subnet

label, VLAN basic is created to describe the existing VLANs managed by the Acropolis leader. Network controller-managed subnets have no label

and are simply called VLANs.

Supported Configurations

Core Use Cases:

AHV networking with additional features in network controller-enabled VLAN subnets

Flow Virtual Networking VPC overlay subnets

Microsegmentation for network controller-enabled VLAN-backed subnets

Microsegmentation within VPC overlay subnets

Management interfaces(s):

Prism Central (PC)

Supported Environment(s):

On-Premises: 

AHV

Nutanix Cloud Clusters (NC2) 

NC2 Azure

Prerequisites for network controller-enabled VLANs:

Prism Central 2023.3

AOS 6.7

AHV 9

MSP enabled 

Upgrades:

Included in LCM 

Pro tip

Deploy Prism Central as extra large for maximum network controller scalability.

Implementation Constructs

The network controller (previously Atlas Network Controller) controls the virtual networking stack used by Flow Virtual Networking VPCs and

network controller-enabled VLAN-backed subnets in AHV. The network controller enables configurations at scale and allows for new features

such as subnets that exist in multiple Prism Element clusters. This network stack will enable future networking and network security features.

With the expanded capabilities, there are a few constructs that are different from what is used in the OVS-based architecture.

The network controller is used to centrally manage and administer VLANs, overlay subnets, IP address pools, and security policies from Prism

Central. The network controller runs on Prism Central. 
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Network Control Plane

The network controller programs the network control plane and determines how packets are processed. This control plane uses Open Virtual

Network (https://www.ovn.org/en/architecture/). A new virtual switch named brAtlas is applied to every AHV host. 

Network Controller Control Plane

Network Bridges

There are 2 bridge types used with the network controller, brAtlas and br0. 

brAtlas

The bridge brAtlas is a virtual switch that is applied to every AHV host and managed by the network controller. Guest VMs in VPCs and network

controller-backed VLANs connect to brAtlas via a tap interface. 

Network Controller Architecture Overview

br0

The bridge br0 is an uplink bridge that functions as a layer 2 switch for brAtlas and connects the physical networks. There can be multiple uplink

bridges if required. These additional uplink bridges would follow the same naming construct and be named br0, br1, br2, etc.

VLANs and Logical Switches

For guest VLAN tagging, every VLAN is mapped to a logical switch within brAtlas. Each logical switch will have an associated localnet port

connecting to the uplink virtual switch, such as br0. A localnet port is the point of connectivity between logical switches and physical networks. 



A localnet port is made up of a pair of patch ports between brAtlas and br0. A network controller-enabled VLAN-backed subnet maps to a logical

switch in brAtlas. 
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